

Programmer’s Reference

Launchpad Programmer’s Reference 2

1 Introduction

This manual describes Launchpad’s MIDI communication format. This is all the proprietary

information you need to be able to write patches and applications that are customised for

Launchpad.

It is assumed that you already have a basic knowledge of MIDI, and some appropriate software

for writing interactive MIDI applications (for example, Max for Live, Max/MSP, or Pure Data).

Numbers in this manual are given in both hexadecimal and decimal equivalents, as different

software favours the use of different conventions. To avoid any ambiguity, hexadecimal numbers

are always followed by a lower-case h.

2 Launchpad MIDI Overview

Launchpad comprises eighty buttons. These divide into three sections: a square grid of sixty-four

buttons, eight round ‘scene launch’ buttons arranged along the right-hand side, and a row of

round buttons at the top that are generally employed by Automap or Live.

Every button is back-lit by a bi-coloured LED. Each LED consists of a red and a green element.

When these are both turned on, the light can be mixed to form amber.

All communication with Launchpad is conducted using MIDI note-on, note-off, and controller

change messages. Launchpad transmits and receives on MIDI channel 1. There is one exception to

this, which will be covered later, but it is not essential to learn it.

Hence a Launchpad MIDI message is always three bytes long. (For good reasons, the driver does

not support running status.) A valid message therefore takes one of these forms:

Message type Hex version Decimal version

Note off 80h, Key, Velocity 128, Key, Velocity

Note on 90h, Key, Velocity 144, Key, Velocity

Controller change B0h, Controller, Data 176, Controller, Data

Launchpad uses a low-speed version of USB. A limitation of this is that it accepts a maximum of

400 messages per second. Because there are 80 LED addresses (one for each bi-colour LED), it will

take 200 milliseconds to update a Launchpad completely. Two work-arounds are provided to

speed up its real and apparent update speed:

• MIDI channel 3 note-on messages (beginning 92h, or 146 decimal) can be used to update

the entire surface two LEDs at a time.

• Launchpad can be double-buffered. This means that all the LED states can be updated

internally while they continue to show their existing state. The buffers may then be

swapped with a single command, so that the update of the surface appears to be

instantaneous.

Launchpad Programmer’s Reference 3

3 Computer-to-Launchpad Messages

Note Off

 Hex version 80h, Key, Velocity

 Decimal version 128, Key, Velocity

This message is interpreted in exactly the same way as a note-on message containing the same key

code, and velocity zero. The velocity byte contained within the note-off message is ignored.

Set grid LEDs

 Hex version 90h, Key, Velocity.

 Decimal version 144, Key, Velocity.

A note-on message changes the state of a grid LED. Key is the MIDI note number, which

determines the LED location. Velocity is used to set the LED colour. Launchpad can be configured

to map its buttons to MIDI note messages in one of two ways. The differences between these

mapping modes are covered later, and can be seen in Figures 1 and 2. The default mapping is the

X-Y layout. In this mapping, locations are addressed as follows, with the origin being the square

button at the top-left corner of the grid:

 Hex version Key = (10h x Row) + Column

 Decimal version Key = (16 x Row) + Column

The scene launch buttons (the round buttons with printed triangles) are column 8. Invalid column

numbers (9 to 15) are also interpreted as column 8.

Velocity is determined as follows (those unfamiliar with binary notation can read on for the

formula):

 Bit Name Meaning

 6 Must be 0.

 5..4 Green Green LED brightness.

 3 Clear If 1: clear the other buffer’s copy of this LED.

 2 Copy If 1: write this LED data to both buffers.

 Note: this behaviour overrides the Clear behaviour

 when both bits are set.

 1..0 Red Red LED brightness.

The Copy and Clear bits allow manipulation of the Launchpad’s double-buffering feature. See the

‘Control double-buffering’ message and the Appendix for details about how this can be used.

Launchpad Programmer’s Reference 4

Launchpad is able to set the brightness of green and red LEDs to one of four values:

 Brightness Meaning

 0 Off.

 1 Low brightness.

 2 Medium brightness.

 3 Full brightness.

If the double-buffering features are not in use, it is good practice to keep the Copy and Clear bits set

when turning LEDs on or off. This makes it possible to use the same routines in flashing mode

without re-working them.

A formula for calculating velocity values is:

 Hex version Velocity = (10h x Green)

 + Red

 + Flags

 Decimal version Velocity = (16 x Green)

 + Red

 + Flags

 where Flags = 12 (OCh in hex) for normal use;

 8 to make the LED flash, if configured;

 0 if using double-buffering.

The following tables of pre-calculated velocity values for normal use may also be helpful:

 Hex Decimal Colour Brightness

 0Ch 12 Off Off

 0Dh 13 Red Low

 0Fh 15 Red Full

 1Dh 29 Amber Low

 3Fh 63 Amber Full

 3Eh 62 Yellow Full

 1Ch 28 Green Low

 3Ch 60 Green Full

Values for flashing LEDs are:

 Hex Decimal Colour Brightness

 0Bh 11 Red Full

 3Bh 59 Amber Full

 3Ah 58 Yellow Full

 38h 56 Green Full

The top row of round buttons, normally reserved for Automap and Live features, are accessed

using controller change messages 68–6Fh. These are described elsewhere in this manual.

Launchpad Programmer’s Reference 5

Figure 1. Launchpad in X-Y layout (mapping mode 1).

These diagrams express the same numbers in three different forms.

Every MIDI key code in bold text is a ‘C’.

Grey shading is used to clarify the key arrangement pattern.

X-Y layout (Hex equivalent) X-Y layout (Decimal equivalent)

X-Y layout (MIDI note equivalent)

Launchpad Programmer’s Reference 6

Figure 2. Launchpad in drum layout (mapping mode 2).

These diagrams express the same numbers in three different forms.

Every MIDI key code in bold text is a ‘C’.

Grey shading is used to clarify the key arrangement pattern.

Drum rack layout (Hex equivalent) Drum rack layout (Decimal equivalent)

Drum rack layout (MIDI note equivalent)

Launchpad Programmer’s Reference 7

Reset Launchpad

 Hex version B0h, 00h, 00h.

 Decimal version 176, 0, 0.

All LEDs are turned off, and the mapping mode, buffer settings, and duty cycle are reset to their

default values.

Select the grid mapping mode

 Hex version B0h, 00h, 01-02h.

 Decimal version 176, 0, 1-2.

This command affects the mapping of Launchpad buttons to MIDI key codes for messages in both

directions. There are two possible mappings, selectable with the last byte of this message:

 Mapping Meaning

 1 X-Y layout (the default).

 2 Drum rack layout.

The X-Y layout is best for writing applications that use the Launchpad as a free grid, as it is easy to

navigate a cursor around the 8x8 grid in any direction by simply adding or subtracting. The drum

rack layout is better for situations when the Launchpad must deal with musical MIDI notes: six

continuous octaves are available in this mode, and these are laid out in a regular pattern.

Figures 1 and 2 illustrate the button locations and MIDI note numbers in each mapping mode.

Control double-buffering

 Hex version B0h, 00h, 20-3Dh.

 Decimal version 176, 0, 32-61.

See the Appendix for more information on double-buffering. The last byte is given as follows:

 Bit Name Meaning

 6 Must be 0.

 5 Must be 1.

 4 Copy If 1: copy the LED states from the new ‘displayed’

 buffer to the new ‘updating’ buffer.

 3 Flash If 1: continually flip ‘displayed’ buffers to make

 selected LEDs flash.

 2 Update Set buffer 0 or buffer 1 as the new ‘updating’ buffer.

 1 Must be 0.

 0 Display Set buffer 0 or buffer 1 as the new ‘displaying’

 buffer.

Launchpad Programmer’s Reference 8

For those less familiar with binary, the formula for calculating the data byte is:

 Hex version Data = (4 x Update)

 + Display

 + 20h

 + Flags

 Decimal version Data = (4 x Update)

 + Display

 + 32

 + Flags

 where Flags = 16 (10h in Hex) for Copy;

 8 for Flash;

 0 otherwise.

The default state is zero: no flashing; the update buffer is 0; the displayed buffer is also 0. In this

mode, any LED data written to Launchpad is displayed instantly.

Sending this message also resets the flash timer, so it can be used to resynchronise the flash rates

of all the Launchpads connected to a system.

Turn on all LEDs

 Hex version B0h, 00h, 7D-7Fh.

 Decimal version 176, 0, 125-127.

The last byte can take one of three values:

 Hex Decimal Meaning

 7Dh 125 Low brightness test.

 7Eh 126 Medium brightness test.

 7Fh 127 Full brightness test.

Sending this command resets all other data — see the Reset Launchpad message for more

information.

Launchpad Programmer’s Reference 9

 Set the duty cycle

 Hex version B0h, 1E-1Fh, Data.

 Decimal version 176, 30-31, Data.

Launchpad controls the brightness of its LEDs by continually switching them on and off faster

than the eye can see: a technique known as multiplexing. This command provides a way of

altering the proportion of time for which the LEDs are on while they are in low- and medium-

brightness modes. This proportion is known as the duty cycle.

Manipulating this is useful for fade effects, for adjusting contrast, and for creating custom palettes.

The duty cycle is encoded in the controller number as well as the data byte, as follows:

Duty cycle = numerator / denominator

 where numerator is a number between 1 and 16;

 denominator is a number between 3 and 18.

If numerator is less than 9, send B0h, 1Eh (176, 30), and then the following:

Hex version Data = (10h x (numerator – 1))

 + (denominator – 3)

Decimal version Data = (16 x (numerator – 1))

 + (denominator – 3)

Otherwise, send B0h, 1Fh (176, 31), and then the following:

Hex version Data = (10h x (numerator – 9))

 + (denominator – 3)

Decimal version Data = (16 x (numerator – 9))

 + (denominator – 3)

The medium-brightness LED duty cycle is always twice this number.

The default duty cycle is 1/5 (which would be set using B0h, 1Eh, 02h) meaning that low-

brightness LEDs are on for only every fifth multiplex pass, and medium-brightness LEDs are on

for two passes in every five. As another example, the low-brightness duty cycle could be set to to

2/7 by using B0h, 1Eh, 14h.

Generally, lower duty cycles (numbers closer to zero) will increase contrast between different

brightness settings but will also increase flicker; higher ones will eliminate flicker, but will also

reduce contrast. Note that using less simple ratios (such as 3/17 or 2/11) can also increase

perceived flicker.

If you are particularly sensitive to strobing lights, please use this command with care when

working with large areas of low-brightness LEDs: in particular, avoid duty cycles of 1/8 or less.

Launchpad Programmer’s Reference 10

Set Automap/Live control LEDs

 Hex version B0h, 68-6Fh, Data.

 Decimal version 176, 104-111, Data.

This command sets the LEDs under the top row of round buttons, normally reserved for Automap

and Live features. The controller number determines the button’s location: the leftmost button

(cursor up/learn) is 68h (104 in decimal), and the controller number increases from left to right.

The data byte sets the LED colour, and takes exactly the same format as the velocity byte in note-

on messages.

Rapid LED update

 Hex version 92h, Velocity 1, Velocity 2,

 92h, Velocity 3, Velocity 4 ...

 Decimal version 146, Velocity 1, Velocity 2,

 146, Velocity 3, Velocity 4 ...

Sending a MIDI channel 3 note-on message enters a special LED update mode. All eighty LEDs

may be set using only forty consecutive instructions, without having to send any key addresses.

Irrespective of the mapping chosen, this will update the 8x8 grid in left-to-right, top-to-bottom

order, then the eight scene launch buttons in top-to-bottom order, and finally the eight

Automap/Live buttons in left-to-right order (these are otherwise inaccessible using note-on

messages). Overflowing data will be ignored.

To leave the mode, send a standard messsage beginning with 80h, 90h, or B0h. Sending another

kind of message and then re-sending 92h will reset the cursor to the top left of the grid.

Launchpad Programmer’s Reference 11

4 Launchpad-to-Computer messages

Grid button pressed

 Hex version 90h, Key, Velocity.

 Decimal version 144, Key, Velocity.

The Key is the key location, as described in the previous section and in Figures 1 and 2. A message

is sent with velocity 7Fh (127 decimal) when a button is pressed. A second message is sent with

velocity 0 when it is released.

Automap/Live button pressed

 Hex version B0h, 68-6Fh, Data.

 Decimal version 176, 104-111, Data.

The leftmost button (cursor up/learn) is controller number 68h (104 decimal), and the controller

number increases from left to right. A message is sent with velocity 7Fh (127 decimal) when a

button is pressed down. A second message is sent with velocity 0 when it is released.

Launchpad Programmer’s Reference 12

Appendix — LED double-buffering and flashing

The Launchpad has two LED buffers, 0 and 1. Either one can be displayed while either is updated

by incoming LED instructions. In practice, this can enhance the performance of Launchpad in one

of two ways:

1. By enabling a large-scale LED update which, although it could take 100 milliseconds to set

up, appears to the user to be instantaneous.

2. By automatically flashing selected LEDs.

To exploit double-buffering for the first purpose requires very little modification to existing

applications. It can be introduced in the following way:

1. Send B0h, 00h, 31h (decimal 176, 0, 49) on start-up. This sets buffer 1 as the displayed

buffer, and buffer 0 as the updating buffer. Launchpad will cease to show new LED data

that is written to it.

2. Write LEDs to the Launchpad as usual, ensuring that the Copy and Clear bits are not set.

3. When this update is finished, send B0h, 00h, 34h (decimal 176, 0, 52). This sets buffer 0 as

the displayed buffer, and buffer 1 as the updating buffer. The new LED data will instantly

become visible. The current contents of buffer 0 will automatically be copied to buffer 1.

4. Write more LEDs to the Launchpad, with Copy and Clear bits set to zero.

5. When this update is finished, send B0h, 00h, 31h again (decimal 176, 0, 49). This switches

back to the first state. The new LED data will become visible, and the contents of buffer 1

will be copied back to buffer 0.

6. Continue from step 2.

7. Finally, to turn this mode off, send B0h, 00h, 30h (decimal 176, 0, 48).

Alternatively, chosen LEDs can be made to flash. To turn on automatic flashing, which lets

Launchpad use its own flashing speed, send:

 Hex version B0h, 00h, 28h.

 Decimal version 176, 0, 40.

If an external timeline is required to make the LEDs flash at a determined rate, the following

sequence is suggested:

 Turn flashing LEDs on B0h, 00h, 20h (decimal version 176, 0, 32).

 Turn flashing LEDs off B0h, 00h, 21h (decimal version 176, 0, 33).

As mentioned previously, it is good practice to keep the Clear and Copy bits set while addressing

LEDs generally, so that an application can easily be expanded to include flashing. Otherwise,

unintended effects will occur when trying to introduce it later.

